Studies on depth-of-field effects in microscopy supported by numerical simulations.
نویسندگان
چکیده
Micrographs are two-dimensional (2D) representations of three-dimensional (3D) objects. When the depth-of-field of a micrograph is comparable with or larger than the characteristic dimension of objects within the micrograph, measured 2D parameters (e.g. particle number density, surface area of particles, fraction of open space) require stereological correction to determine the correct 3D values. Here, we develop a stereological theory using a differential approach to relate the 3D volume fraction and specific surface area to the 2D projected area and perimeter fractions, accounting for the influence of depth-of-field. The stereological theory is appropriate for random isotropic arrangements of non-interpenetrating particles and is valid for convex geometries (e.g. spheres, spheroids, cylinders). These geometrical assumptions allow the stereological formulae to be expressed as a set of algebraic equations incorporating a single parameter to describe particle shape that is tightly bounded between 1.5pi and 2pi. The stereological theory may also be applied to arrangements of interpenetrating convex particles, and for this case, the resulting stereological formulae become identical to the formulae previously presented by Miles. To test the accuracy of the stereological theory, random computational arrangements of non-interpenetrating and interpenetrating spheres or cylinders are analysed, and the projected area and perimeter fractions are numerically determined as a function of depth-of-field. The computational results show very good agreement with the theoretical predictions over a broad range of depth-of-field, volume fraction and particle geometry for both non-interpenetrating and interpenetrating particles, demonstrating the overall accuracy of the stereological theory. Applications of the stereological theory towards analysis of biological tissues and extracellular matrix are discussed.
منابع مشابه
Study of Loose Soil Layer Effects on Excavations Supported by Steel Sheet Pile Walls – A Numerical Study
Abstract Steel sheet pile walls are being widely used in civil engineering projects for support systems. Soil is not uniform in depth, sometimes may be exit loose or soft soil layer in various depth. This issue can cause different effects on ground surface displacements, forces and moments acting on sheet piles and struts during excavation procedure, compared with status that soil is uniform...
متن کاملCross Section Effects on Convergence-Confinement Method in Multi Stage Tunnel Excavation
Dimensionless coefficient () in convergence confinement method shows the relaxation of stress in the wall of the tunnel at different excavation movements. This factor is considered a constant number in previous studies and tunnel geometric characteristics (such as depth, cross-section shape, radius, soil material, etc.) are not included in its determination; however, ignoring these effects can...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملLattice numerical simulations of hydraulic fractures interacting with oblique natural interfaces
The hydraulic fracturing propagation is strongly influenced by the existence of natural fractures. This is a very important factor in hydraulic fracturing operations in unconventional reservoirs. Various studies have been done to consider the effect of different parameters such as stress anisotropy, toughness, angle of approach and fluid properties on interaction mechanisms including crossing, ...
متن کاملEffects of Brace-viscous Damper System on the Dynamic Response of Steel Frames
In this study, the effects of three different viscous damper configurations, chevron, diagonal and toggle, as well as brace stiffness on the performance of brace-viscous damper system in various steel frams under different earthquake records were investigated. A finite element software, ANSYS, is exploited to develop the numerical models. To verify the numerical simulations, their results were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of microscopy
دوره 220 Pt 3 شماره
صفحات -
تاریخ انتشار 2005